Intermediate templates guided groupwise registration of diffusion tensor images
نویسندگان
چکیده
Registration of a population of diffusion tensor images (DTIs) is one of the key steps in medical image analysis, and it plays an important role in the statistical analysis of white matter related neurological diseases. However, pairwise registration with respect to a pre-selected template may not give precise results if the selected template deviates significantly from the distribution of images. To cater for more accurate and consistent registration, a novel framework is proposed for groupwise registration with the guidance from one or more intermediate templates determined from the population of images. Specifically, we first use a Euclidean distance, defined as a combinative measure based on the FA map and ADC map, for gauging the similarity of each pair of DTIs. A fully connected graph is then built with each node denoting an image and each edge denoting the distance between a pair of images. The root template image is determined automatically as the image with the overall shortest path length to all other images on the minimum spanning tree (MST) of the graph. Finally, a sequence of registration steps is applied to progressively warping each image towards the root template image with the help of intermediate templates distributed along its path to the root node on the MST. Extensive experimental results using diffusion tensor images of real subjects indicate that registration accuracy and fiber tract alignment are significantly improved, compared with the direct registration from each image to the root template image.
منابع مشابه
Directed Graph Based Image Registration
In this paper, a novel image registration method is proposed to achieve accurate registration between images having large shape differences with the help of a set of appropriate intermediate templates. We first demonstrate that directionality is a key factor in both pairwise image registration and groupwise registration, which is defined in this paper to describe the influence of the registrati...
متن کاملGroupwise Registration and Atlas Construction of 4th-Order Tensor Fields Using the R + Riemannian Metric
Registration of Diffusion-Weighted MR Images (DW-MRI) can be achieved by registering the corresponding 2nd-order Diffusion Tensor Images (DTI). However, it has been shown that higher-order diffusion tensors (e.g. order-4) outperform the traditional DTI in approximating complex fiber structures such as fiber crossings. In this paper we present a novel method for unbiased group-wise non-rigid reg...
متن کاملRegistration of Brain MR Images in Large-Scale Populations
QIAN WANG: Registration of Brain MR Images in Large-Scale Populations. (Under the direction of Dinggang Shen.) Non-rigid image registration is fundamentally important in analyzing large-scale population of medical images, e.g., T1-weighted brain MRI data. Conventional pairwise registration methods involve only two images, as the moving subject image is deformed towards the space of the template...
متن کاملSharpMean: Groupwise registration guided by sharp mean image and tree-based registration
Groupwise registration has become more and more popular due to its attractiveness for unbiased analysis of population data. One of the most popular approaches for groupwise registration is to iteratively calculate the group mean image and then register all subject images towards the latest estimated group mean image. However, its performance might be undermined by the fuzzy mean image estimated...
متن کاملDiffusion-tensor image registration
In this chapter, we introduce the problem of registering diffusion tensor magnetic resonance (DT-MR) images. The registration task for these images is made challenging by the orientational information they contain, which is affected by the registration transformation. This information about orientation and other aspects of the diffusion tensor are exploited in the development of similarity meas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 54 2 شماره
صفحات -
تاریخ انتشار 2011